Naturally occurring sources

From PsychonautWiki
(Redirected from Naturally-occurring)
Jump to navigation Jump to search
Yellow-warning-sign1.svg

Research safety before use

While the following list of plants can be beneficial for various purposes, it's important to note that some of these organisms may contain toxic substances (especially those without articles) in addition, which may pose potential risks if ingested or handled improperly. Before incorporating any of these organisms into your home or garden, we strongly recommend conducting thorough research to understand the specific safety considerations and taking appropriate precautions, especially if you have children or pets. For more information see: Poisonous animals, fungus, and plants. And deadly fungus species.

Artwork from the cover of Hallucinogenic Plants (A Golden Guide)

Naturally occurring sources refers to psychoactive chemicals or their precursors that already exist in nature. This is in contrast to synthetic psychoactive compounds which are artificially produced or designed in laboratories, psychoactive substances derived from artificial fungi biotransformation, or psychoactive substances, and precursor chemicals, produced by GMOs. However, these natural chemicals can often be reproduced synthetically as well, though notably they appear in nature or through human cultivation.

Proposed origins

There are a variety of proposed reasons for the appearance of psychoactive substances in organisms including the following examples:

Selective breeding

Selective breeding is a method used by cultivators to add or remove traits from successive generations of organisms by breeding together those that have the preferred properties in hopes of developing a desirable genetic strain. This may have resulted in both the potency and appearance of psychoactive substance(s) which the cultivators wished to produce.[1]

Defense mechanism

Another proposed reason for the presence of psychoactive substances in nature is their use as a defence mechanism. Through natural selection an organism may develop a poison or toxin useful for fending off predators,[2] as can be seen in Latrodectus Spiders who's psychoactive Latrotoxin has no reward value, and instead poses a threat to others.

Reward symbiosis

It is also possible that co-evolution encouraged psychoactive organisms to appear as a means of propagation. That is; in the same way sweet fruits were naturally selected by animals spreading their contained seeds, so were psychoactive flora that posed some benefit to the animals.[3]

Genetic similarity

An incidental cause of the prevalence of these substances is the shared genetic origins of the organisms. Given that they share a great deal of genetic code it is reasonable to assume that this may have been a factor in producing chemicals similar enough to neurotransmitters so as to activate receptor sites. For example many psychoactive chemicals are biosynthesized from amino acids such as tryptophan, while in humans this amino acid is used to make serotonin. The result is that some of the tryptamines in nature are serotonergic agonists when consumed.

Historical significance

The use of psychoactive substances is deeply rooted in human culture and dates back to pre-history. Early societies often incorporated these organisms into their traditions in medicine, spirituality, or recreation, such as the use of soma in the origins of Hinduism, and many of these uses continue into the modern day. Some common examples of this are the use of wine containing Ethanol in Christian communion, and Ayahuasca among indigenous peoples of the Amazon.

Many of these organisms have been instrumental to the progress of various scientific fields, such as Biology, Medicine, Psychonautics, and continue to reveal their importance with their involvement in major discoveries, such as the discovery of cannabinoid receptors[4] preceding our knowledge of endocannabinoids.[5]

Precluding endogenous chemicals, many of these organisms served as humanities only means of altering neurochemistry until the advent of synthetic psychoactives during the modern age. They have been at the forefront of major historical developments, such as pharmacotherapy, the funding of organized crime, the psychedelic era of the 60's, and the current "War on Drugs".

Examples

Below is an index of articles regarding natural sources of psychoactive substances. Other than inanimate sources they are categorized by kingdom of organism with sections for each applicable class of psychoactivity, sub-sections are given to active constituents, and finally the taxonomy and common name. Names may appear more than once if they contain a variety of substances, or their active substance has a variety of effects. Please note the quantity of substance obtained through an organism is not always safe and/or effective at common levels of consumption, but they are here included for sake of completeness. In addition some of the organisms are toxic or dangerous and thus proper research and preparation is recommended before attempting to personally investigate their activity.

Botanical sources
Leaf.svg

Mycological sources
Mushroom.png

Zoological sources
Wipp-Frog-silhouette.svg

These animals produce venom used for self-defense against predators. Invertebrates like insects deliver stings, or bites, whilst vertebrates like frogs and toads are "milked" for secretion that are either smoked (eg. Colorado River Toad) or burned into the skin (eg. kambo).

Pathogens
Atom.png

Inanimate sources
Atom.png

External links

References

  1. Conner, J. K. (July 2003). "ARTIFICIAL SELECTION: A POWERFUL TOOL FOR ECOLOGISTS". Ecology. 84 (7): 1650–1660. doi:10.1890/0012-9658(2003)084[1650:ASAPTF]2.0.CO;2. ISSN 0012-9658. 
  2. Steppuhn, A., Gase, K., Krock, B., Halitschke, R., Baldwin, I. T. (17 August 2004). "Nicotine's Defensive Function in Nature". PLOS Biology. 2 (8): e217. doi:10.1371/journal.pbio.0020217. ISSN 1545-7885. 
  3. Nesse, R. M. (April 2002). "Evolution And Addiction: Commentaries". Addiction. 97 (4): 470–471. doi:10.1046/j.1360-0443.2002.00086.x. ISSN 0965-2140. 
  4. Devane, W. A., Dysarz, F. A., Johnson, M. R., Melvin, L. S., Howlett, A. C. (1 November 1988). "Determination and characterization of a cannabinoid receptor in rat brain". Molecular Pharmacology. 34 (5): 605–613. ISSN 0026-895X. 
  5. The Discovery of the Endocannabinoid System. Springer Publishing Company. 13 January 2021. ISBN 9780826135636. 
  6. Paulke, A., Kremer, C., Wunder, C., Wurglics, M., Schubert-Zsilavecz, M., Toennes, S. W. (April 2015). "Studies on the alkaloid composition of the Hawaiian Baby Woodrose Argyreia nervosa , a common legal high". Forensic Science International. 249: 281–293. doi:10.1016/j.forsciint.2015.02.011. ISSN 0379-0738. 
  7. Chao JM, Der Marderosian AH (1973). "Ergoline alkaloidal constituents of Hawaiian baby wood rose, Argyreia nervosa (Burmf) Bojer". J. Pharm. Sci. 62 (4): 588–91. doi:10.1002/jps.2600620409. 
  8. Argyreia osyrensis Wikipedia |
  9. Stictocardia queenslandica Wikipedia
  10. Charles Savage, Willis W. Harman and James Fadiman, Ipomoea purpurea: A Naturally Occurring Psychedelic
  11. 11.0 11.1 Wilson, C. W. M. (20 December 2017). The Pharmacological and Epidemiological Aspects of Adolescent Drug Dependence: Proceedings of the Society for the Study of Addiction, London, 1 and 2 September 1966. Elsevier. ISBN 9781483186160. 
  12. 12.0 12.1 "Show Plant". phytochem.nal.usda.gov. 
  13. "Ololiuqui (Rivea corymbosa) im GIFTPFLANZEN.COMpendium - giftpflanzen.com". www.giftpflanzen.com. Retrieved 2008-04-18. 
  14. 14.0 14.1 14.2 14.3 14.4 14.5 14.6 Ogunbodede, O., McCombs, D., Trout, K., Daley, P., Terry, M. (September 2010). "New mescaline concentrations from 14 taxa/cultivars of Echinopsis spp. (Cactaceae) ("San Pedro") and their relevance to shamanic practice". Journal of Ethnopharmacology. 131 (2): 356–362. doi:10.1016/j.jep.2010.07.021. ISSN 0378-8741. 
  15. 15.0 15.1 15.2 15.3 Alkaloid content in relation to ethnobotanical use of Trichocereus pachanoi and related taxa | http://gradworks.umi.com/14/78/1478388.html
  16. Pardanani, J. H., McLaughlin, J. L., Kondrat, R. W., Cooks, R. G. (December 1977). "Cactus alkaloids. XXXVI. Mescaline and related compounds from Trichocereus peruvianus". Lloydia. 40 (6): 585–590. ISSN 0024-5461. 
  17. Reti, L., Castrillón, J. A. (April 1951). "Cactus Alkaloids. I. Trichocereus terscheckii (Parmentier) Britton and Rose". Journal of the American Chemical Society. 73 (4): 1767–1769. doi:10.1021/ja01148a097. ISSN 0002-7863. 
  18. 18.0 18.1 18.2 18.3 18.4 18.5 18.6 Erowid Cacti Vaults : Visionary Cactus Guide - Mescaline from Sawdust 
  19. 19.0 19.1 19.2 Lophophora diffusa – Trout’s Notes 
  20. 20.0 20.1 20.2 20.3 Gabermann, V. (February 1978). "[Estimation of mescaline and pellotine in Lophophora coulter plants (Cactaceae) by means of the oscillographic polarography]". Biokhimiia (Moscow, Russia). 43 (2): 246–251. ISSN 0320-9725. 
  21. 21.0 21.1 Lophophora williamsii analysis – Trout’s Notes 
  22. 22.0 22.1 22.2 Erowid Arundo donax Vaults : TIHKAL mention of Arundo donax 
  23. Moretti C, Gaillard Y, Grenand P, Bévalot F, Prévosto JM (June 2006). "Identification of 5-hydroxy-tryptamine (bufotenine) in takini (Brosimumacutifolium Huber subsp. acutifolium C.C. Berg, Moraceae), a shamanic potion used in the Guiana Plateau". Journal of Ethnopharmacology. 106 (2): 198–202. doi:10.1016/j.jep.2005.12.022. PMID 16455218. 
  24. Chamakura RP (1994). "Bufotenine—a hallucinogen in ancient snuff powders of South America and a drug of abuse on the streets of New York City". Forensic Sci Rev. 6 (1): 2–18. 
  25. 25.0 25.1 25.2 Erowid Phalaris Vault : FAQ 2.01 
  26. Bufotenin - DMT-Nexus Wiki 
  27. 27.0 27.1 27.2 Ott, J. (1996). Pharmacotheon: Entheogenic Drugs, Their Plant Sources and History. Natural Products Company. ISBN 9780961423483. 
  28. 28.0 28.1 Tryptamine Carriers FAQ 
  29. 29.0 29.1 Duynisveld, G. W., Slominski, B. A., Wittenberg, K. M., Campbell, L. D. (1 October 1990). "ALKALOID CONTENT OF REED CANARYGRASS ( Phalaris arundinaceae L.) AS DETERMINED BY GAS-LIQUID CHROMATOGRAPHY". Canadian Journal of Plant Science. 70 (4): 1097–1103. doi:10.4141/cjps90-132. ISSN 0008-4220. 
  30. http://actachemscand.org/pdf/acta_vol_23_p0903-0916.pdf
  31. Hegnauer, R. (30 July 1996). Chemotaxonomie der Pflanzen: Band XIb-1: Leguminosae Teil 2: Caesalpinioideae und Mimosoideae. Springer Science & Business Media. ISBN 9783764351656. 
  32. Ayahuasca Library > Ott 1998 - Pharmahuasca, Anahuasca and Vinho da Jurema, 2012 
  33. Erowid Psychotria Vault: DMT Contents and Dosages 
  34. Shulgin, A. T., Shulgin, A. (1997). Tihkal: the continuation. Transform. ISBN 9780963009692. 
  35. List of psychoactive acacias wikipedia | https://en.wikipedia.org/wiki/List_of_Acacia_species_known_to_contain_psychoactive_alkaloids
  36. Acacia acuminata Wikipedia | https://en.wikipedia.org/wiki/Acacia_acuminata
  37. Acacia acuminata - DMT-Nexus Wiki 
  38. Acacia baileyana Wikipedia | https://en.wikipedia.org/wiki/Acacia_baileyana
  39. Acacia baileyana - DMT-Nexus Wiki 
  40. Acacia burkittii wikipedia | https://en.wikipedia.org/wiki/Acacia_burkittii
  41. Acacia burkittii - DMT-Nexus Wiki 
  42. Acacia confusa Wikipedia | https://en.wikipedia.org/wiki/Acacia_confusa
  43. Acacia confusa - DMT-Nexus Wiki 
  44. Acacia courtii - DMT-Nexus Wiki 
  45. Acacia concurrens Wikipedia | https://en.wikipedia.org/wiki/Acacia_concurrens
  46. Acacia floribunda Wikipedia | https://en.wikipedia.org/wiki/Acacia_floribunda
  47. Acacia floribunda - DMT-Nexus Wiki 
  48. Acacia jibberdingensis wikipedia | https://en.wikipedia.org/wiki/Acacia_jibberdingensis
  49. Acacia longifolia Wikipedia | https://en.wikipedia.org/wiki/Acacia_longifolia
  50. Acacia longifolia - DMT-Nexus Wiki 
  51. Acacia maidenii Wikipedia | https://en.wikipedia.org/wiki/Acacia_maidenii
  52. Acacia maidenii - DMT-Nexus Wiki 
  53. Acacia neurophylla wikipedia | https://en.wikipedia.org/wiki/Acacia_neurophylla
  54. Acacia obtusifolia Wikipedia | https://en.wikipedia.org/wiki/Acacia_obtusifolia
  55. Acacia obtusifolia - DMT-Nexus Wiki 
  56. Acacia phlebophylla Wikipedia | https://en.wikipedia.org/wiki/Acacia_phlebophylla
  57. Acacia phlebophylla - DMT-Nexus Wiki 
  58. Acacia prominens Wikipedia | https://en.wikipedia.org/wiki/Acacia_prominens
  59. Acacia simplex Wikipedia | https://en.wikipedia.org/wiki/Acacia_simplex
  60. 60.0 60.1 60.2 60.3 60.4 60.5 60.6 60.7 60.8 Koenig, X., Hilber, K. (29 January 2015). "The Anti-Addiction Drug Ibogaine and the Heart: A Delicate Relation". Molecules. 20 (2): 2208–2228. doi:10.3390/molecules20022208. ISSN 1420-3049. 
  61. 61.0 61.1 61.2 61.3 61.4 61.5 61.6 61.7 61.8 Alper, K. R. (2001). "The Alkaloids: Chemistry and Biology". Chapter 1 Ibogaine: A review. 56. Elsevier. pp. 1–38. doi:10.1016/S0099-9598(01)56005-8. ISBN 9780124695566. 
  62. 62.0 62.1 62.2 62.3 62.4 62.5 Jenks, C. (1 January 2002). "Extraction Studies of Tabernanthe Iboga and Voacanga Africana". Natural Product Letters. 16 (1): 71–76. doi:10.1080/1057563029001/4881. ISSN 1057-5634. 
  63. 63.0 63.1 63.2 63.3 Menzies, J. R., Paterson, S. J., Duwiejua, M., Corbett, A. D. (29 May 1998). "Opioid activity of alkaloids extracted from Picralima nitida (fam. Apocynaceae)". European Journal of Pharmacology. 350 (1): 101–108. doi:10.1016/s0014-2999(98)00232-5. ISSN 0014-2999. 
  64. 64.0 64.1 Aydin, S., Beis, R., Oztürk, Y., Baser, K. H., Baser, C. (July 1998). "Nepetalactone: a new opioid analgesic from Nepeta caesarea Boiss". The Journal of Pharmacy and Pharmacology. 50 (7): 813–817. doi:10.1111/j.2042-7158.1998.tb07145.x. ISSN 0022-3573. 
  65. 65.0 65.1 Eisenbraun, E. J., Browne, C. E., Irvin-Willis, R. L., McGurk, D. J., Eliel, E. L., Harris, D. L. (September 1980). "Structure and stereochemistry 4a.beta.,7.alpha.,7a.beta.-nepetalactone from Nepeta mussini and its relationship to the 4a.alpha.,7.alpha.,7a.alpha.- and 4a.alpha.,7.alpha.,7a.beta.-nepetalactones from N. cataria". The Journal of Organic Chemistry. 45 (19): 3811–3814. doi:10.1021/jo01307a016. ISSN 0022-3263. 
  66. Salvia divinorum drug profile 
  67. 67.0 67.1 Hatipoglu, S. D., Yalcinkaya, B., Akgoz, M., Ozturk, T., Goren, A. C., Topcu, G. (November 2017). "Screening of Hallucinogenic Compounds and Genomic Characterisation of 40 Anatolian Salvia Species". Phytochemical analysis: PCA. 28 (6): 541–549. doi:10.1002/pca.2703. ISSN 1099-1565. 
  68. Borges, J. T., Sparrapan, R., Guimarães, J. R., Eberlin, M. N., Augusti, R. (2008). "Chloroform formation by chlorination of aqueous algae suspensions: online monitoring via membrane introduction mass spectrometry". Journal of the Brazilian Chemical Society. 19: 950–955. doi:10.1590/S0103-50532008000500021. ISSN 0103-5053. 
  69. Jansen, S. A., Kleerekooper, I., Hofman, Z. L. M., Kappen, I. F. P. M., Stary-Weinzinger, A., Heyden, M. A. G. van der (September 2012). "Grayanotoxin Poisoning: 'Mad Honey Disease' and Beyond". Cardiovascular Toxicology. 12 (3): 208–215. doi:10.1007/s12012-012-9162-2. ISSN 1530-7905. 
  70. Pomeroy, A. R., Raper, C. (April 1971). "Pyrrolizidine alkaloids: actions on muscarinic receptors in the guinea-pig ileum". British Journal of Pharmacology. 41 (4): 683–690. doi:10.1111/j.1476-5381.1971.tb07076.x. ISSN 0007-1188. 
  71. 71.0 71.1 71.2 71.3 71.4 Meyler’s Side Effects of Drugs - 16th Edition 
  72. Duboisia hopwoodii Wikipedia | https://en.wikipedia.org/wiki/Duboisia_hopwoodii
  73. |Duboisia leichhardtii Wikipedia | https://en.wikipedia.org/wiki/Duboisia
  74. |Duboisia myoporoides Wikipedia | https://en.wikipedia.org/wiki/Duboisia_myoporoides
  75. Erythroxylum ecarinatum wikipedia | https://en.wikipedia.org/wiki/Erythroxylum_ecarinatum
  76. Erythroxylum ecarinatum, 2007 
  77. Erythroxylum vaccinifolium wikipedia | https://en.wikipedia.org/wiki/Erythroxylum_vaccinifolium
  78. Luger, D., Poli, G., Wieder, M., Stadler, M., Ke, S., Ernst, M., Hohaus, A., Linder, T., Seidel, T., Langer, T., Khom, S., Hering, S. (November 2015). "Identification of the putative binding pocket of valerenic acid on GABAA receptors using docking studies and site-directed mutagenesis". British Journal of Pharmacology. 172 (22): 5403–5413. doi:10.1111/bph.13329. ISSN 1476-5381. 
  79. Grundmann, O., Wang, J., McGregor, G. P., Butterweck, V. (December 2008). "Anxiolytic Activity of a Phytochemically Characterized Passiflora incarnata Extract is Mediated via the GABAergic System". Planta Medica. 74 (15): 1769–1773. doi:10.1055/s-0028-1088322. ISSN 0032-0943. 
  80. Lolli, L. F., Sato, C. M., Romanini, C. V., Villas-Boas, L. D. B., Santos, C. A. M., Oliveira, R. M. W. de (May 2007). "Possible involvement of GABAA-benzodiazepine receptor in the anxiolytic-like effect induced by Passiflora actinia extracts in mice". Journal of Ethnopharmacology. 111 (2): 308–314. doi:10.1016/j.jep.2006.11.021. ISSN 0378-8741. 
  81. Erythroxylum coca Wikipedia | https://en.wikipedia.org/wiki/Erythroxylum_coca
  82. Erythroxylum novogranatense Wikipedia | https://en.wikipedia.org/wiki/Erythroxylum_novogranatense
  83. Erowid Psychoactive Vaults : Australian Natural Highs FAQ 
  84. Herraiz, T., Chaparro, C. (18 January 2006). "Human monoamine oxidase enzyme inhibition by coffee and β-carbolines norharman and harman isolated from coffee". Life Sciences. 78 (8): 795–802. doi:10.1016/j.lfs.2005.05.074. ISSN 0024-3205. 
  85. 85.0 85.1 Ahsan, M., Armstrong, J. A., Gray, A. I., Waterman, P. G. (1 March 1995). "Terpenoids, alkaloids and coumarins from Boronia inornata and Boronia gracilipes". Phytochemistry. 38 (5): 1275–1278. doi:10.1016/0031-9422(94)00567-D. ISSN 0031-9422. 
  86. Chatterjee, SS; Bhattacharya, SK; Wonnemann, M; Singer, A; Müller, WE (1998). "Hyperforin as a possible antidepressant component of hypericum extracts". Life sciences. 63 (6): 499–510. doi:10.1016/s0024-3205(98)00299-9. PMID 9718074. 
  87. Rezaee, R., Hosseinzadeh, H. (January 2013). "Safranal: From an Aromatic Natural Product to a Rewarding Pharmacological Agent". Iranian Journal of Basic Medical Sciences. 16 (1): 12–26. ISSN 2008-3866. 
  88. Benoni, H., Dallakian, P., Taraz, K. (January 1996). "Studies on the essential oil from guarana". 203 (1): 95–98. doi:10.1007/BF01267777. ISSN 0044-3026. 
  89. Erowid Online Books : “PIHKAL” - #158 TMA-2 
  90. 90.0 90.1 Rao, P. V., Gan, S. H. (2014). "Cinnamon: A Multifaceted Medicinal Plant". Evidence-based Complementary and Alternative Medicine : eCAM. 2014: 642942. doi:10.1155/2014/642942. ISSN 1741-427X. 
  91. 91.0 91.1 Brophy, J. J., Craven, L. A., Doran, J. C. (2013). Melaleucas: their botany, essential oils and uses. Australian Centre for International Agricultural Research. ISBN 9781922137524. 
  92. Tan, K. H., Nishida, R. (24 April 2012). "Methyl Eugenol: Its Occurrence, Distribution, and Role in Nature, Especially in Relation to Insect Behavior and Pollination". Journal of Insect Science. 12: 56. doi:10.1673/031.012.5601. ISSN 1536-2442. 
  93. Brophy, J. J., Goldsack, R. J., Fookes, C. J. R., Forster, P. I. (1 May 1995). "Leaf Oils of the Genus Backhousia (Myrtaceae)". Journal of Essential Oil Research. 7 (3): 237–254. doi:10.1080/10412905.1995.9698514. ISSN 1041-2905. 
  94. Australian Safrole Containing Plants (2007) | http://ausaf.awardspace.info/#Cinnamomum_baileyanum
  95. 95.0 95.1 95.2 C Huhn, M Pütz, R Dahlenburg, U Pyell (2005). "Sassafras oils as precursors for the production of synthetic drugs: Profiling via MEKC-UVD". doi:10.13140/2.1.4698.5285. 
  96. Australian Safrole Containing Plants - laubatii, 2007 
  97. 97.0 97.1 CINNAMOMUM OILS (INCLUDING CINNAMON AND CASSIA) 
  98. Australian Safrole Containing Plants - oliveri, 2007 
  99. Della, E., Jefferies, P. (1961). "The Chemistry of Eremophila Species. III. The Essential Oil of Eremophila longifolia F. Muell". Australian Journal of Chemistry. 14 (4): 663. doi:10.1071/CH9610663. ISSN 0004-9425. 
  100. Australian Safrole Containing Plants (2007) | http://ausaf.awardspace.info/#Eremophila_longifolia
  101. Piper hispidinervum: A Sustainable Source of Safrole 
  102. Piper hispidinervum: A Sustainable Source of Safrole 
  103. https://en.wikipedia.org/wiki/Black_pepper#Phytochemicals,_folk_medicine_and_research
  104. Duke, J. A. (16 August 1993). CRC Handbook of Alternative Cash Crops. CRC Press. ISBN 9780849336201. 
  105. Australian Safrole Containing Plants (2007) | http://ausaf.awardspace.info/#Zieria_Rutaceae/
  106. Brito-Filho, S. G. de, Maciel, J. K. da S., Teles, Y. C. F., Fernandes, M. M. M. de S., Chaves, O. S., Ferreira, M. D. L., Fernandes, P. D., Felix, L. P., Cirino, I. C. da S., Siqueira-Júnior, J. P., Braz-Filho, R., Souza, M. de F. V. de (1 July 2017). "Phytochemical study of Pilosocereus pachycladus and antibiotic-resistance modifying activity of syringaldehyde". Revista Brasileira de Farmacognosia. 27 (4): 453–458. doi:10.1016/j.bjp.2017.06.001. ISSN 0102-695X. 
  107. 107.0 107.1 107.2 107.3 Boyce, Greg R.; Gluck-Thaler, Emile; Slot, Jason C.; Stajich, Jason E.; Davis, William J.; James, Tim Y.; Cooley, John R.; Panaccione, Daniel G.; Eilenberg, Jørgen; De Fine Licht, Henrik H.; Macias, Angie M.; Berger, Matthew C.; Wickert, Kristen L.; Stauder, Cameron M.; Spahr, Ellie J.; Maust, Matthew D.; Metheny, Amy M.; Simon, Chris; Kritsky, Gene; Hodge, Kathie T.; Humber, Richard A.; Gullion, Terry; Short, Dylan P.G.; Kijimoto, Teiya; Mozgai, Dan; Arguedas, Nidia; Kasson, Matt T. (2019). "Psychoactive plant- and mushroom-associated alkaloids from two behavior modifying cicada pathogens". Fungal Ecology. 41: 147–164. doi:10.1016/j.funeco.2019.06.002. ISSN 1754-5048. 
  108. Fushiya, S., Gu, Q. Q., Ishikawa, K., Funayama, S., Nozoe, S. (March 1993). "(2R), (1'R) and (2R), (1'S)-2-amino-3-(1,2-dicarboxyethylthio)propanoic acids from Amanita pantherina. Antagonists of N-methyl-D-aspartic acid (NMDA) receptors". Chemical & Pharmaceutical Bulletin. 41 (3): 484–486. doi:10.1248/cpb.41.484. ISSN 0009-2363. 
  109. Barker, S. A., McIlhenny, E. H., Strassman, R. (July 2012). "A critical review of reports of endogenous psychedelic N, N-dimethyltryptamines in humans: 1955-2010: Reports of endogenous psychedelic N, N-dimethyltryptamines in humans". Drug Testing and Analysis. 4 (7–8): 617–635. doi:10.1002/dta.422. ISSN 1942-7603. 
  110. Fruchart-Gaillard C, Mourier G, Marquer C, Stura E, Birdsall NJ, Servent D (December 2008). "Different interactions between MT7 toxin and the human muscarinic M1 receptor in its free and N-methylscopolamine-occupied states". Mol. Pharmacol. 74 (6): 1554–63. doi:10.1124/mol.108.050773. PMID 18784346. 
  111. Yong, Ed (30 July 2018). "This Parasite Drugs Its Hosts With the Psychedelic Chemical in Shrooms". The Atlantic (in English). 
  112. Ferreira, Sebastiao Rodrigo; Machado, Alan Rodrigues T.; Furtado, Luís Fernando; Gomes, Jose Hugo de S.; de Almeida, Raquel M.; de Oliveira Mendes, Thiago; Maciel, Valentina N.; Barbosa, Fernando Sergio; Carvalho, Lorendane M.; Bueno, Lilian Lacerda; Bartholomeu, Daniella Castanheira; de Araújo, Jackson Victor; Rabelo, Elida M. L.; de Pádua, Rodrigo Maia; Pimenta, Lucia Pinheiro Santos; Fujiwara, Ricardo Toshio (20 October 2020). "Ketamine can be produced by Pochonia chlamydosporia: an old molecule and a new anthelmintic?". Parasites & Vectors. p. 527. doi:10.1186/s13071-020-04402-w. 
  113. 114.0 114.1 114.2 Atreya, S. K., Mahaffy, P. R., Niemann, H. B., Wong, M. H., Owen, T. C. (February 2003). "Composition and origin of the atmosphere of Jupiter—an update, and implications for the extrasolar giant planets". Planetary and Space Science. 51 (2): 105–112. doi:10.1016/S0032-0633(02)00144-7. ISSN 0032-0633. 
  114. Zuckerman, B., Turner, B. E., Johnson, D. R., Lovas, F. J., Fourikis, N., Palmer, P., Morris, M., Lilley, A. E., Ball, J. A., Clark, F. O. (March 1975). "Detection of interstellar trans-ethyl alcohol". The Astrophysical Journal. 196: L99. doi:10.1086/181753. ISSN 0004-637X. 
  115. 116.0 116.1 116.2 Armenta-Reséndiz, M., Ríos-Leal, E., Rivera-García, M. T., López-Rubalcava, C., Cruz, S. L. (August 2019). "Structure-activity study of acute neurobehavioral effects of cyclohexane, benzene, m-xylene, and toluene in rats". Toxicology and Applied Pharmacology. 376: 38–45. doi:10.1016/j.taap.2019.05.016. ISSN 0041-008X. 
  116. Cernicharo, J., Heras, A. M., Tielens, A. G. G. M., Pardo, J. R., Herpin, F., Guélin, M., Waters, L. B. F. M. (10 January 2001). "[ITAL]Infrared Space Observatory's[/ITAL] Discovery of C[TINF]4[/TINF]H[TINF]2[/TINF], C[TINF]6[/TINF]H[TINF]2[/TINF], and Benzene in CRL 618". The Astrophysical Journal. 546 (2): L123–L126. doi:10.1086/318871. ISSN 0004-637X. 
  117. 118.0 118.1 118.2 118.3 Barceloux, D. G. (9 March 2012). Medical Toxicology of Drug Abuse: Synthesized Chemicals and Psychoactive Plants. John Wiley & Sons, Inc. doi:10.1002/9781118105955. ISBN 9781118105955. 
  118. Betz, A. L. (March 1981). "Ethylene in IRC +10216". The Astrophysical Journal. 244: L103. doi:10.1086/183490. ISSN 0004-637X. 
  119. Marcelino, N., Cernicharo, J., Agúndez, M., Roueff, E., Gerin, M., Martín-Pintado, J., Mauersberger, R., Thum, C. (20 August 2007). "Discovery of Interstellar Propylene (CH 2 CHCH 3 ): Missing Links in Interstellar Gas-Phase Chemistry". The Astrophysical Journal. 665 (2): L127–L130. doi:10.1086/521398. ISSN 0004-637X.